

Gas jet Development at LBNL

Design, Production, & Test are advancing gas target performance

- •Gas jets are used in wake field experiments for repeatable, high rep rate plasmas
- •Accelerator performance depends critically on jet density, profile, and smoothness as well as on laser focus location in the jet. Jet optimization is likely to significantly improve performance.
- •Anticipated needs for optimal performance are challenging to achieve
- •Jet development efforts at LBNL include:
 - -design and testing of new nozzle shapes (cylindrical and asymmetric) fast quasi 1d tools and 3d flow simulations
 - -advanced machining to allow production of novel nozzle shapes
 - -development of new valve technologies (PZT, micro valves)
 - -Test stand for quick characterization of nozzles
 - -2w asymmetric imaging interferometer in the accelerator chamber

······

Accelerator performance is strongly affected by jet properties including back pressure, profile, z location

Jet optimization is under way to control and enhance accelerator output

Wake field experiment gas jet needs & status

BERKELEY LAB	Desired:	Have	Solutions?
Electron densities (He jet):	1e18 to 1e20/cm3	1e18 to 1e20/cm3	
Density gradients: (@1mm from nozzle)	$\sim 100 \mu m$	1mm	highly supersonic
Density fluctuations(@center)	< 5%	?	
2mm diameter round jets	X	X	
10-20mm long rectangular jets (<2mm wide to reduce pumping	X g needs)		3d modeling
Fast gas pulses (100µs - 1ms) (practical pumping)	X		new valve technology (piezo, etc under study)
Shaped density profiles (control of injection and acceler	X ation)		Multiple nozzles

Sample of a few potentially interesting nozzle shapes

1d wall following perfect flow code for fast nozzle modeling of cylindrical & rectangular sections

Use the equations of perfect gas flow in a variable area duct derived from assuming isentropic expansion of a perfect gas):

```
 T/t0 = 1/((1 + ((gamma-1)/2)*M^2)) \\ P/p0 = 1/((1 + ((gamma-1)/2)*M^2)^((gamma/(gamma-1))) \\ rho/rho0 = 1/((1 + ((gamma-1)/2)*M^2)^((1/(gamma-1))) \\ A/Astar = (1/M)*((2/(1+gamma)) * (1+((gamma-1)/2)*M^2))^(((gamma+1)/(2*(gamma-1))) \\ M = mach #
```

Calculate flow direction at each z location by looking for the minimum length line satisflying (assuming linear variation of flow angle over cross section- first approximation):

```
thetan = theta2 + (b - r2) (theta1 - theta2) /(r1-r2)
where b is the radius where equal area is inside and outside of r
b = sqrt((r2^2 + r1^2)/2)
```

Allows fast optimization of nozzle shape for smooth mach # contour

Includes effects of flow direction changes due to poppet & throat shape.

Unoptimized nozzles have sharp transitions in Mach # creating shocks (04- GV Bell Nozzle)

10

1d Code allows quick nozzle optimization, and output to 3d flow simulations (SciDAC collaboration)

Sample output - 1d optimized nozzle

Throat Data: At=0.619303, Zt=-0.00384712

Opening & poppet data: opening distance=0.193507, z(open)=-0.00384712poppet area=2.56647, flow area at opening=0.619303 M at opening=1.00001, Max pressure=77.9281

Outflow Data: Ae/A*=10.7017 Ae=6.62758, Re=1.45248 Me=5.14001, RhomaxE=1.33768e+20, RhoE/rho0=0.0317880

Geometry export example

- •Geometry export interfaces to 3d flow codes and machining tools
- •SciDAC collaboration for 3d flow simulations is under way

Advanced nozzle shapes are possible through geometry export to CMC machining tools

- •Slit nozzles and other shapes not possible with traditional machining are being built using computer machine control with geometries exported from the design tools
- •First nozzle has been cut and testing is beginning

Test stand with HeNe neutral density interferometer allows fast characterization of nozzles

- -Neutral density interferometer & fringe tracing recovers 2d phase map with ~0.05rad resolution
- -Testing of cylindrical nozzles on solenoidal gas jets is under way
- -Quick feedback allows rapid itteration of shapes

2 interferometer with asymmetric imaging will measure plasma during system shots, separate sidescatter

- •Interferometer upgrade has been fielded on accelerator and is taking first data.
- •1.4mm * 7mm asymmetric field of view allows imaging of long thin plasma channels
- •Allows measurements of plasma at full system energy -> actual shot conditions

1 Symmetric imaging :500 mJ

- -sidescatter confuses interferogramdata un readable at high power
- -insufficient resolution

-fringe shift too great

First images: Asymmetric 2 interferometer

Partial interferogram: 500mJ

-sidescatter tolerable even at high power

-resolution, fringe shift good

Side Scatter isolated:50mJ

-Separate analysis possible

Conclusion: New gas nozzles/valves are being developed using Test stand interferometer, design/simulation software,

and novel drivers

Design

- -Quasi-1d gas dynamic design code allows fast nozzle design with feedback on mach profiles/etc.
- -Geometry export interfaces to SciDAC flow simulations for 3d CFD nozzle simulations and to CMC machining codes

Production

- -A PZT driven valve and driver have been designed and built to reduce opening time starting testing
- -Slit nozzle has been fabricated and is being tested to provide long, narrow jets
- -Evaluating micro valve technologies for arrayed valves -> shaped gas profiles

Testing and Optimization

- -HeNe interferometer with Chopper provides $< 10\mu$ s time resolution
- -Fringe tracing interferogram analysis software gives ~0.05 rad phase resolution and allows recovery of density profiles from neutral gas or plasma interferograms
- -Testing and optimization of cylindrical nozzles on solenoidal gas jets is under way
- -Testing of slit nozzles and new drivers is beginning